Analysis of non-human primate models for evaluating prion disease therapeutic efficacy

Author:

Mortberg Meredith A.ORCID,Minikel Eric Vallabh,Vallabh Sonia M.ORCID

Abstract

Prion disease is a fatal neurodegenerative disease caused by the conformational corruption of the prion protein (PrP), encoded by the prion protein gene (PRNP). While no disease-modifying therapy is currently available, genetic and pharmacological proofs of concept support development of therapies that lower PrP levels in the brain. In light of proposals for clinical testing of such drugs in presymptomatic individuals at risk for genetic prion disease, extensive nonclinical data are likely to be required, with extra attention paid to choice of animal models. Uniquely, the entire prion disease process can be faithfully modeled through transmission of human prions to non-human primates (NHPs), raising the question of whether NHP models should be used to assess therapeutic efficacy. Here we systematically aggregate data from N = 883 prion-inoculated animals spanning six decades of research studies. Using this dataset, we assess prion strain, route of administration, endpoint, and passage number to characterize the relationship of tested models to currently prevalent human subtypes of prion disease. We analyze the incubation times observed across diverse models and perform power calculations to assess the practicability of testing prion disease therapeutic efficacy in NHPs. We find that while some models may theoretically be able to support therapeutic efficacy studies, pilot studies would be required to confirm incubation time and attack rate before pivotal studies could be designed, cumulatively requiring several years. The models with the shortest and most tightly distributed incubation times are those with smaller brains and weaker homology to humans. Our findings indicate that it would be challenging to conduct efficacy studies in NHPs in a paradigm that honors the potential advantages of NHPs over other available models, on a timeframe that would not risk unduly delaying patient access to promising drug candidates.

Funder

National Institutes of Health

Prion Alliance

Broad Institute

Ono Pharma Foundation

Anonymous Organization

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3