A VPS15-like kinase regulates apicoplast biogenesis and autophagy by promoting PI3P generation in Toxoplasma gondii

Author:

Rawat Rahul Singh,Bansal Priyanka,Sharma PushkarORCID

Abstract

Phosphoinositides are important second messengers that regulate key cellular processes in eukaryotes. While it is known that a single phosphoinositol-3 kinase (PI3K) catalyses the formation of 3’-phosphorylated phosphoinositides (PIPs) in apicomplexan parasites like Plasmodium and Toxoplasma, how its activity and PI3P formation is regulated has remained unknown. Present studies involving a unique Vps15 like protein (TgVPS15) in Toxoplasma gondii provides insight into the regulation of phosphatidyl-3-phosphate (PI3P) generation and unravels a novel pathway that regulates parasite development. Detailed investigations suggested that TgVPS15 regulates PI3P formation in Toxoplasma gondii, which is important for the inheritance of the apicoplast-a plastid like organelle present in most apicomplexans and parasite replication. Interestingly, TgVPS15 also regulates autophagy in T. gondii under nutrient-limiting conditions as it promotes autophagosome formation. For both these processes, TgVPS15 uses PI3P-binding protein TgATG18 and regulates trafficking and conjugation of TgATG8 to the apicoplast and autophagosomes, which is important for biogenesis of these organelles. TgVPS15 has a protein kinase domain but lacks several key residues conserved in conventional protein kinases. Interestingly, two critical residues in its active site are important for PI3P formation and parasitic functions of this kinase. Collectively, these studies unravel a signalling cascade involving TgVPS15, a novel effector of PI3-kinase in T. gondii and possibly other Apicomplexa, that regulate critical processes like apicoplast biogenesis and autophagy.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

National Institute of Immunology

Council of Scientific & Industrial Research

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference41 articles.

1. Plastid in human parasites;GI McFadden;Nature,1996

2. Origin, targeting, and function of the apicomplexan plastid.;DS Roos,1999

3. Building the perfect parasite: cell division in apicomplexa;B Striepen;PLoS Pathog,2007

4. Phosphoinositides: tiny lipids with giant impact on cell regulation;T. Balla;Physiological reviews,2013

5. Phosphoinositides and their functions in apicomplexan parasites;K Wengelnik;Int J Parasitol,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3