A dsRNA-binding mutant reveals only a minor role of exonuclease activity in interferon antagonism by the arenavirus nucleoprotein

Author:

Bohn Patrick,Waßmann Irke,Wendt Lisa,Leske Anne,Hoenen Thomas,Tews Birke A.,Groseth AllisonORCID

Abstract

The arenavirus nucleoprotein (NP) plays an important role in the virus’ ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.e. H426A. We found that expression of Tacaribe virus (TCRV) NP containing this RNA-binding H426A mutation was still able to efficiently block IFN-β promoter activity in response to Sendai virus infection, despite being strongly impaired in its exonuclease activity. This was in contrast to a conventional exonuclease active site mutant (E388A), which was impaired with respect to both exonuclease activity and IFN antagonism. Importantly, growth of a recombinant virus encoding the RNA-binding mutation (rTCRV-H426A) was similar to wild-type in IFN-deficient cells, unlike the active site mutant (rTCRV-E388A), which was already markedly impaired in these cells. Further, in IFN-competent cells, the TCRV-H426A RNA-binding mutant showed more robust growth and delayed IFN-β mRNA upregulation compared to the TCRV-E388A active site mutant. Taken together, this novel mutational approach, which allows us to now dissect the different contributions of the NP exonuclease activity and IKKε-binding/IRF3 inhibition to IFN antagonism, clearly suggests that conventional exonuclease mutants targeting the active site overestimate the contribution of the exonuclease function, and that rather other IFN antagonistic functions of NP play the dominant role in IFN-antagonism.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Loeffler-Institut

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference68 articles.

1. Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction;MB Oldstone;Curr Top Microbiol Immunol,2002

2. The phylogeny of New World (Tacaribe complex) arenaviruses.;MD Bowen;Virology,1996

3. Arenaviruses other than Lassa virus;RN Charrel;Antiviral Res,2003

4. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures;RE Randall;J Gen Virol,2008

5. Mice lacking alpha/beta and gamma interferon receptors are susceptible to junin virus infection;OA Kolokoltsova;J Virol,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3