Abstract
Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn’s disease and Parkinson’s disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.
Funder
Canadian Institutes of Health Research
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Leprosy Research Initiative
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases
Investments for the Future Program
MYCOPARADOX ANR project
CNPq
FAPERJ
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献