The capsule of Bacillus anthracis protects it from the bactericidal activity of human defensins and other cationic antimicrobial peptides

Author:

O’Brien David K.,Ribot Wilson J.,Chabot Donald J.,Scorpio Angelo,Tobery Steven A.,Jelacic Tanya M.,Wu Zhibin,Friedlander Arthur M.ORCID

Abstract

During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1–6 (HNP-1-4, HD-5-6), the human beta defensins 1–4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs.

Funder

Defense Threat Reduction Agency

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference66 articles.

1. Anthrax;M Mock;Annu Rev Microbiol,2001

2. Evidence for plasmid-mediated toxin production in Bacillus anthracis;P Mikesell;Infect Immun,1983

3. Demonstration of a capsule plasmid in Bacillus anthracis;BD Green;Infect Immun,1985

4. Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid;I Uchida;J Gen Microbiol,1985

5. Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax;S Makino;J Infect Dis,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3