Neuron populations use variable combinations of short-term feedback mechanisms to stabilize firing rate

Author:

Pellizzari Sarah,Hu Min,Amaral-Silva Lara,Saunders Sandy E.,Santin Joseph M.ORCID

Abstract

Neurons tightly regulate firing rate and a failure to do so leads to multiple neurological disorders. Therefore, a fundamental question in neuroscience is how neurons produce reliable activity patterns for decades to generate behavior. Neurons have built-in feedback mechanisms that allow them to monitor their output and rapidly stabilize firing rate. Most work emphasizes the role of a dominant feedback system within a neuronal population for the control of moment-to-moment firing. In contrast, we find that respiratory motoneurons use 2 activity-dependent controllers in unique combinations across cells, dynamic activation of an Na+ pump subtype, and rapid potentiation of Kv7 channels. Both systems constrain firing rate by reducing excitability for up to a minute after a burst of action potentials but are recruited by different cellular signals associated with activity, increased intracellular Na+ (the Na+ pump), and membrane depolarization (Kv7 channels). Individual neurons do not simply contain equal amounts of each system. Rather, neurons under strong control of the Na+ pump are weakly regulated by Kv7 enhancement and vice versa along a continuum. Thus, each motoneuron maintains its characteristic firing rate through a unique combination of the Na+ pump and Kv7 channels, which are dynamically regulated by distinct feedback signals. These results reveal a new organizing strategy for stable circuit output involving multiple fast activity sensors scaled inversely across a neuronal population.

Funder

National Institutes of Health

U.S. Department of Defense

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference48 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3