A multi-lab experimental assessment reveals that replicability can be improved by using empirical estimates of genotype-by-lab interaction

Author:

Jaljuli ImanORCID,Kafkafi Neri,Giladi Eliezer,Golani Ilan,Gozes IllanaORCID,Chesler Elissa J.,Bogue Molly A.ORCID,Benjamini Yoav

Abstract

The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless “Genotype-by-Laboratory” (GxL) factor—the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.

Funder

United States - Israel Binational Science Foundation

US–Israel Binational Science Foundation—US National Science Foundation

US National Institute of Health - US National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3