Enhanced mosquito vectorial capacity underlies the Cape Verde Zika epidemic

Author:

Rose Noah H.,Dabo Stéphanie,da Veiga Leal Silvânia,Sylla Massamba,Diagne Cheikh T.,Faye Oumar,Faye Ousmane,Sall Amadou A.,McBride Carolyn S.,Lambrechts LouisORCID

Abstract

The explosive emergence of Zika virus (ZIKV) across the Pacific and Americas since 2007 was associated with hundreds of thousands of human cases and severe outcomes, including congenital microcephaly caused by ZIKV infection during pregnancy. Although ZIKV was first isolated in Uganda, Africa has so far been exempt from large-scale ZIKV epidemics, despite widespread susceptibility among African human populations. A possible explanation for this pattern is natural variation among populations of the primary vector of ZIKV, the mosquito Aedes aegypti. Globally invasive populations of Ae. aegypti outside of Africa are considered effective ZIKV vectors because they are human specialists with high intrinsic ZIKV susceptibility, whereas African populations of Ae. aegypti across the species’ native range are predominantly generalists with low intrinsic ZIKV susceptibility, making them less likely to spread viruses in the human population. We test this idea by studying a notable exception to the patterns observed across most of Africa: Cape Verde experienced a large ZIKV outbreak in 2015 to 2016. We find that local Ae. aegypti in Cape Verde have substantial human-specialist ancestry, show a robust behavioral preference for human hosts, and exhibit increased susceptibility to ZIKV infection, consistent with a key role for variation among mosquito populations in ZIKV epidemiology. These findings suggest that similar human-specialist populations of Ae. aegypti in the nearby Sahel region of West Africa, which may be expanding in response to rapid urbanization, could serve as effective vectors for ZIKV in the future.

Funder

Horizon 2020 Framework Programme

Agence Nationale de la Recherche

National Institutes of Health

Helen Hay Whitney Foundation

New York Stem Cell Foundation

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3