Robust genetic codes enhance protein evolvability

Author:

Rozhoňová Hana,Martí-Gómez Carlos,McCandlish David M.,Payne Joshua L.ORCID

Abstract

The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability—the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Institute of General Medical Sciences

Alfred P. Sloan Research Fellowship

Simons Center for Quantitative Biology at Cold Spring Harbor Laboratory

Publisher

Public Library of Science (PLoS)

Reference104 articles.

1. The Roles of Mutation, Inbreeding, crossbreeding and Selection;S. Wright;Evolution. Proceedings of the XI International Congress of Genetics,1932

2. Natural Selection and the Concept of a Protein Space;J. Maynard Smith;Nature,1970

3. Exploring protein fitness landscapes by directed evolution;PA Romero;Nat Rev Mol Cell Biol,2009

4. The causes of evolvability and their evolution;JL Payne;Nat Rev Genet,2019

5. Is evolvability evolvable?;M. Pigliucci;Nat Rev Genet,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3