Abstract
Activity of sensory neurons is driven not only by external stimuli but also by feedback signals from higher brain areas. Attention is one particularly important internal signal whose presumed role is to modulate sensory representations such that they only encode information currently relevant to the organism at minimal cost. This hypothesis has, however, not yet been expressed in a normative computational framework. Here, by building on normative principles of probabilistic inference and efficient coding, we developed a model of dynamic population coding in the visual cortex. By continuously adapting the sensory code to changing demands of the perceptual observer, an attention-like modulation emerges. This modulation can dramatically reduce the amount of neural activity without deteriorating the accuracy of task-specific inferences. Our results suggest that a range of seemingly disparate cortical phenomena such as intrinsic gain modulation, attention-related tuning modulation, and response variability could be manifestations of the same underlying principles, which combine efficient sensory coding with optimal probabilistic inference in dynamic environments.
Funder
Austrian Science Fund
FP7 People: Marie-Curie Actions
Publisher
Public Library of Science (PLoS)
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献