Creating clear and informative image-based figures for scientific publications

Author:

Jambor HelenaORCID,Antonietti AlbertoORCID,Alicea BradlyORCID,Audisio Tracy L.ORCID,Auer SusannORCID,Bhardwaj VivekORCID,Burgess Steven J.ORCID,Ferling IuliiaORCID,Gazda Małgorzata AnnaORCID,Hoeppner Luke H.ORCID,Ilangovan Vinodh,Lo HungORCID,Olson MischaORCID,Mohamed Salem Yousef,Sarabipour SarvenazORCID,Varma AalokORCID,Walavalkar Kaivalya,Wissink Erin M.ORCID,Weissgerber Tracey L.ORCID

Abstract

Scientists routinely use images to display data. Readers often examine figures first; therefore, it is important that figures are accessible to a broad audience. Many resources discuss fraudulent image manipulation and technical specifications for image acquisition; however, data on the legibility and interpretability of images are scarce. We systematically examined these factors in non-blot images published in the top 15 journals in 3 fields; plant sciences, cell biology, and physiology (n = 580 papers). Common problems included missing scale bars, misplaced or poorly marked insets, images or labels that were not accessible to colorblind readers, and insufficient explanations of colors, labels, annotations, or the species and tissue or object depicted in the image. Papers that met all good practice criteria examined for all image-based figures were uncommon (physiology 16%, cell biology 12%, plant sciences 2%). We present detailed descriptions and visual examples to help scientists avoid common pitfalls when publishing images. Our recommendations address image magnification, scale information, insets, annotation, and color and may encourage discussion about quality standards for bioimage publishing.

Funder

American Heart Association

Robert W. Fulk Career Development Award

The Hormel Foundation

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference39 articles.

1. Analyzing Visual Information in the Scientific Literature;P Lee;IEEE Transactions on Big Data,2018

2. Digital images are data: and should be treated as such;DW Cromey;Methods Mol Biol,2013

3. The Prevalence of Inappropriate Image Duplication in Biomedical Research Publications;EM Bik;MBio,2016

4. Assessing phototoxicity in live fluorescence imaging;PP Laissue;Nat Methods,2017

5. Imaging methods are vastly underreported in biomedical research;G Marques;Elife,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3