Experience-dependent evolution of odor mixture representations in piriform cortex

Author:

Berners-Lee Alice,Shtrahman Elizabeth,Grimaud Julien,Murthy Venkatesh N.ORCID

Abstract

Rodents can learn from exposure to rewarding odors to make better and quicker decisions. The piriform cortex is thought to be important for learning complex odor associations; however, it is not understood exactly how it learns to remember discriminations between many, sometimes overlapping, odor mixtures. We investigated how odor mixtures are represented in the posterior piriform cortex (pPC) of mice while they learn to discriminate a unique target odor mixture against hundreds of nontarget mixtures. We find that a significant proportion of pPC neurons discriminate between the target and all other nontarget odor mixtures. Neurons that prefer the target odor mixture tend to respond with brief increases in firing rate at odor onset compared to other neurons, which exhibit sustained and/or decreased firing. We allowed mice to continue training after they had reached high levels of performance and find that pPC neurons become more selective for target odor mixtures as well as for randomly chosen repeated nontarget odor mixtures that mice did not have to discriminate from other nontargets. These single unit changes during overtraining are accompanied by better categorization decoding at the population level, even though behavioral metrics of mice such as reward rate and latency to respond do not change. However, when difficult ambiguous trial types are introduced, the robustness of the target selectivity is correlated with better performance on the difficult trials. Taken together, these data reveal pPC as a dynamic and robust system that can optimize for both current and possible future task demands at once.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3