Multivariate phenotype analysis enables genome-wide inference of mammalian gene function

Author:

Nicholson GeorgeORCID,Morgan Hugh,Ganjgahi HabibORCID,Brown Steve D. M.ORCID,Mallon Ann-Marie,Holmes Chris

Abstract

The function of the majority of genes in the human and mouse genomes is unknown. Investigating and illuminating this dark genome is a major challenge for the biomedical sciences. The International Mouse Phenotyping Consortium (IMPC) is addressing this through the generation and broad-based phenotyping of a knockout (KO) mouse line for every protein-coding gene, producing a multidimensional data set that underlies a genome-wide annotation map from genes to phenotypes. Here, we develop a multivariate (MV) statistical approach and apply it to IMPC data comprising 148 phenotypes measured across 4,548 KO lines. There are 4,256 (1.4% of 302,997 observed data measurements) hits called by the univariate (UV) model analysing each phenotype separately, compared to 31,843 (10.5%) hits in the observed data results of the MV model, corresponding to an estimated 7.5-fold increase in power of the MV model relative to the UV model. One key property of the data set is its 55.0% rate of missingness, resulting from quality control filters and incomplete measurement of some KO lines. This raises the question of whether it is possible to infer perturbations at phenotype–gene pairs at which data are not available, i.e., to infer some in vivo effects using statistical analysis rather than experimentation. We demonstrate that, even at missing phenotypes, the MV model can detect perturbations with power comparable to the single-phenotype analysis, thereby filling in the complete gene–phenotype map with good sensitivity. A factor analysis of the MV model’s fitted covariance structure identifies 20 clusters of phenotypes, with each cluster tending to be perturbed collectively. These factors cumulatively explain 75% of the KO-induced variation in the data and facilitate biological interpretation of perturbations. We also demonstrate that the MV approach strengthens the correspondence between IMPC phenotypes and existing gene annotation databases. Analysis of a subset of KO lines measured in replicate across multiple laboratories confirms that the MV model increases power with high replicability.

Funder

Medical Research Council

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3