Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images

Author:

Jang HojinORCID,McCormack DevinORCID,Tong FrankORCID

Abstract

Deep neural networks (DNNs) for object classification have been argued to provide the most promising model of the visual system, accompanied by claims that they have attained or even surpassed human-level performance. Here, we evaluated whether DNNs provide a viable model of human vision when tested with challenging noisy images of objects, sometimes presented at the very limits of visibility. We show that popular state-of-the-art DNNs perform in a qualitatively different manner than humans—they are unusually susceptible to spatially uncorrelated white noise and less impaired by spatially correlated noise. We implemented a noise training procedure to determine whether noise-trained DNNs exhibit more robust responses that better match human behavioral and neural performance. We found that noise-trained DNNs provide a better qualitative match to human performance; moreover, they reliably predict human recognition thresholds on an image-by-image basis. Functional neuroimaging revealed that noise-trained DNNs provide a better correspondence to the pattern-specific neural representations found in both early visual areas and high-level object areas. A layer-specific analysis of the DNNs indicated that noise training led to broad-ranging modifications throughout the network, with greater benefits of noise robustness accruing in progressively higher layers. Our findings demonstrate that noise-trained DNNs provide a viable model to account for human behavioral and neural responses to objects in challenging noisy viewing conditions. Further, they suggest that robustness to noise may be acquired through a process of visual learning.

Funder

National Eye Institute

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference59 articles.

1. How does the brain solve visual object recognition?;JJ DiCarlo;Neuron,2012

2. Mechanisms of face perception;DY Tsao;Annu Rev Neurosci,2008

3. Meaning in visual search;MC Potter;Science,1975

4. A feedforward architecture accounts for rapid categorization;T Serre;Proc Natl Acad Sci U S A,2007

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3