Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain

Author:

Krause Matthew R.ORCID,Vieira Pedro G.,Thivierge Jean-Philippe,Pack Christopher C.

Abstract

Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain’s ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Parkinson Canada

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3