Why have we not yet solved the challenge of plastic degradation by biological means?

Author:

Bertocchini FedericaORCID,Arias Clemente F.

Abstract

The invention of fossil fuel–derived plastics changed and reshaped society for the better; however, their mass production has created an unprecedented accumulation of waste and an environmental crisis. Scientists are searching for better ways to reduce plastic waste than the current methods of mechanical recycling and incineration, which are only partial solutions. Biological means of breaking down plastics have been investigated as alternatives, with studies mostly focusing on using microorganisms to biologically degrade sturdy plastics like polyethylene (PE). Unfortunately, after a few decades of research, biodegradation by microorganisms has not provided the hoped-for results. Recent studies suggest that insects could provide a new avenue for investigation into biotechnological tools, with the discovery of enzymes that can oxidize untreated PE. But how can insects provide a solution that could potentially make a difference? And how can biotechnology revolutionize the plastic industry to stop ongoing/increasing contamination?

Funder

Roechling Foundation

Consejo Superior de Investigaciones Científicas

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference55 articles.

1. https://plasticseurope.org/.

2. Production, use, and fate of all plastics ever made.;R Geyer;Sci Adv,2017

3. https://www.oecd-ilibrary.org/sites/71a51317-en/index.html?itemId=/content/component/71a51317-en#section-d1e3612.

4. Mechanical Recycling of Packaging Plastics: A Review;ZOG Schyns;Macromol Rapid Commun,2021

5. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials;F Zhang;J Energy Chem,2022

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3