Neural speech restoration at the cocktail party: Auditory cortex recovers masked speech of both attended and ignored speakers

Author:

Brodbeck ChristianORCID,Jiao Alex,Hong L. ElliotORCID,Simon Jonathan Z.ORCID

Abstract

Humans are remarkably skilled at listening to one speaker out of an acoustic mixture of several speech sources. Two speakers are easily segregated, even without binaural cues, but the neural mechanisms underlying this ability are not well understood. One possibility is that early cortical processing performs a spectrotemporal decomposition of the acoustic mixture, allowing the attended speech to be reconstructed via optimally weighted recombinations that discount spectrotemporal regions where sources heavily overlap. Using human magnetoencephalography (MEG) responses to a 2-talker mixture, we show evidence for an alternative possibility, in which early, active segregation occurs even for strongly spectrotemporally overlapping regions. Early (approximately 70-millisecond) responses to nonoverlapping spectrotemporal features are seen for both talkers. When competing talkers’ spectrotemporal features mask each other, the individual representations persist, but they occur with an approximately 20-millisecond delay. This suggests that the auditory cortex recovers acoustic features that are masked in the mixture, even if they occurred in the ignored speech. The existence of such noise-robust cortical representations, of features present in attended as well as ignored speech, suggests an active cortical stream segregation process, which could explain a range of behavioral effects of ignored background speech.

Funder

National Institutes of Health

University of Maryland

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3