A prosthesis utilizing natural vestibular encoding strategies improves sensorimotor performance in monkeys

Author:

Wiboonsaksakul Kantapon PumORCID,Roberts Dale C.,Della Santina Charles C.,Cullen Kathleen E.

Abstract

Sensory pathways provide complex and multifaceted information to the brain. Recent advances have created new opportunities for applying our understanding of the brain to sensory prothesis development. Yet complex sensor physiology, limited numbers of electrodes, and nonspecific stimulation have proven to be a challenge for many sensory systems. In contrast, the vestibular system is uniquely suited for prosthesis development. Its peripheral anatomy allows site-specific stimulation of 3 separate sensory organs that encode distinct directions of head motion. Accordingly, here, we investigated whether implementing natural encoding strategies improves vestibular prosthesis performance. The eye movements produced by the vestibulo-ocular reflex (VOR), which plays an essential role in maintaining visual stability, were measured to quantify performance. Overall, implementing the natural tuning dynamics of vestibular afferents produced more temporally accurate VOR eye movements. Exploration of the parameter space further revealed that more dynamic tunings were not beneficial due to saturation and unnatural phase advances. Trends were comparable for stimulation encoding virtual versus physical head rotations, with gains enhanced in the latter case. Finally, using computational methods, we found that the same simple model explained the eye movements evoked by sinusoidal and transient stimulation and that a stimulation efficacy substantially less than 100% could account for our results. Taken together, our results establish that prosthesis encodings that incorporate naturalistic afferent dynamics and account for activation efficacy are well suited for restoration of gaze stability. More generally, these results emphasize the benefits of leveraging the brain’s endogenous coding strategies in prosthesis development to improve functional outcomes.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3