Dynamic changes in brain lateralization correlate with human cognitive performance

Author:

Wu Xinran,Kong Xiangzhen,Vatansever Deniz,Liu Zhaowen,Zhang Kai,Sahakian Barbara J.,Robbins Trevor W.,Feng Jianfeng,Thompson Paul,Zhang JieORCID

Abstract

Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders.

Funder

Science and Technology Innovation 2030 - Brain Science and Brain-Inspired Intelligence Project

Shanghai Municipal Science and Technology Major Project

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Information Technology Center of Zhejiang University

National Institutes of Health

Overseas Expertise Introduction Project for Discipline Innovation

key project of Shanghai Science and Technology

Key Technologies Research and Development Program

Shanghai Pujiang Program

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference82 articles.

1. Mapping brain asymmetry;AW Toga;Nat Rev Neurosci,2003

2. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium;X-Z Kong;Proc Natl Acad Sci,2018

3. Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres.;DG Gee;NeuroImage.,2011

4. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations;DE Stark;J Neurosci,2008

5. Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias?;R Gerrits;Proc Natl Acad Sci,2020

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3