Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging

Author:

Benkarim OualidORCID,Paquola CaseyORCID,Park Bo-yongORCID,Kebets ValeriaORCID,Hong Seok-Jun,Vos de Wael Reinder,Zhang Shaoshi,Yeo B. T. ThomasORCID,Eickenberg Michael,Ge Tian,Poline Jean-BaptisteORCID,Bernhardt Boris C.,Bzdok DaniloORCID

Abstract

Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.

Funder

Healthy Brains for Healthy Lives

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

SickKids Foundation

Azrieli Center for Autism Research

BrainCanada

Tier-2 Canada Research Chairs program

National Institutes of Health

Healthy Brains Healthy Lives initiative

Google

CIFAR Artificial Intelligence Chairs program

National Research Foundation Singapore

NUS Yong Loo Lin School of Medicine

National Medical Research Council

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3