Resurrection of 2′-5′-oligoadenylate synthetase 1 (OAS1) from the ancestor of modern horseshoe bats blocks SARS-CoV-2 replication

Author:

Lytras SpyrosORCID,Wickenhagen Arthur,Sugrue Elena,Stewart Douglas G.,Swingler Simon,Sims Anna,Jackson Ireland Hollie,Davies Emma L.,Ludlam Eliza M.,Li Zhuonan,Hughes Joseph,Wilson Sam J.ORCID

Abstract

The prenylated form of the human 2′-5′-oligoadenylate synthetase 1 (OAS1) protein has been shown to potently inhibit the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. However, the OAS1 orthologue in the horseshoe bats (superfamily Rhinolophoidea), the reservoir host of SARS-related coronaviruses (SARSr-CoVs), has lost the prenylation signal required for this antiviral activity. Herein, we used an ancestral state reconstruction approach to predict and reconstitute in vitro, the most likely OAS1 protein sequence expressed by the Rhinolophoidea common ancestor prior to its prenylation loss (RhinoCA OAS1). We exogenously expressed the ancient bat protein in vitro to show that, unlike its non-prenylated horseshoe bat descendants, RhinoCA OAS1 successfully blocks SARS-CoV-2 replication. Using protein structure predictions in combination with evolutionary hypothesis testing methods, we highlight sites under unique diversifying selection specific to OAS1’s evolution in the Rhinolophoidea. These sites are located near the RNA-binding region and the C-terminal end of the protein where the prenylation signal would have been. Our results confirm that OAS1 prenylation loss at the base of the Rhinolophoidea clade ablated the ability of OAS1 to restrict SARSr-CoV replication and that subsequent evolution of the gene in these bats likely favoured an alternative function. These findings can advance our understanding of the tightly linked association between SARSr-CoVs and horseshoe bats.

Funder

Medical Research Council

Daphne Jackson Trust

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3