State-dependent connectivity in auditory-reward networks predicts peak pleasure experiences to music

Author:

Mori KazumaORCID,Zatorre Robert

Abstract

Music can evoke pleasurable and rewarding experiences. Past studies that examined task-related brain activity revealed individual differences in musical reward sensitivity traits and linked them to interactions between the auditory and reward systems. However, state-dependent fluctuations in spontaneous neural activity in relation to music-driven rewarding experiences have not been studied. Here, we used functional MRI to examine whether the coupling of auditory-reward networks during a silent period immediately before music listening can predict the degree of musical rewarding experience of human participants (N = 49). We used machine learning models and showed that the functional connectivity between auditory and reward networks, but not others, could robustly predict subjective, physiological, and neurobiological aspects of the strong musical reward of chills. Specifically, the right auditory cortex-striatum/orbitofrontal connections predicted the reported duration of chills and the activation level of nucleus accumbens and insula, whereas the auditory-amygdala connection was associated with psychophysiological arousal. Furthermore, the predictive model derived from the first sample of individuals was generalized in an independent dataset using different music samples. The generalization was successful only for state-like, pre-listening functional connectivity but not for stable, intrinsic functional connectivity. The current study reveals the critical role of sensory-reward connectivity in pre-task brain state in modulating subsequent rewarding experience.

Funder

Japan Society for the Promotion of Science

Canadian Institutes of Health Research

Fonds de recherche du Québec

Canada Research Chair program

Fondation de Coopération Scientifique Campus Paris-Saclay

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3