An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records

Author:

Wesołowski SergiuszORCID,Lemmon GordonORCID,Hernandez Edgar J.ORCID,Henrie Alex,Miller Thomas A.ORCID,Weyhrauch DerekORCID,Puchalski Michael D.,Bray Bruce E.ORCID,Shah Rashmee U.ORCID,Deshmukh Vikrant G.,Delaney Rebecca,Yost H. JosephORCID,Eilbeck KarenORCID,Tristani-Firouzi MartinORCID,Yandell Mark

Abstract

Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses.

Funder

AHA Children’s Strategically Focused Research Network

Nora Eccles Treadwell Foundation

National Heart, Lung, and Blood Institute

NRSA training grant

Publisher

Public Library of Science (PLoS)

Reference46 articles.

1. Defining Comorbidity: Implications for Understanding Health and Health Services;J. M. Valderas;Ann. Fam. Med,2009

2. Bayesian Network vs. Cox’s Proportional Hazard Model of PAH Risk: A Comparison

3. Comorbidity: a multidimensional approach;E. Capobianco;Trends Mol. Med,2013

4. Analysis of disease comorbidity patterns in a large-scale China population. BMC Med;M. Guo;Genomics,2019

5. Network biology concepts in complex disease comorbidities;J. X. Hu;Nat. Rev. Genet,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3