Multiple instance learning framework can facilitate explainability in murmur detection

Author:

Rohr MauriceORCID,Müller Benedikt,Dill SebastianORCID,Güney GökhanORCID,Hoog Antink ChristophORCID

Abstract

Objective Cardiovascular diseases (CVDs) account for a high fatality rate worldwide. Heart murmurs can be detected from phonocardiograms (PCGs) and may indicate CVDs. Still, they are often overlooked as their detection and correct clinical interpretation require expert skills. In this work, we aim to predict the presence of murmurs and clinical outcomes from multiple PCG recordings employing an explainable multitask model. Approach Our approach consists of a two-stage multitask model. In the first stage, we predict the murmur presence in single PCGs using a multiple instance learning (MIL) framework. MIL also allows us to derive sample-wise classifications (i.e. murmur locations) while only needing one annotation per recording (“weak label”) during training. In the second stage, we fuse explainable hand-crafted features with features from a pooling-based artificial neural network (PANN) derived from the MIL framework. Finally, we predict the presence of murmurs and the clinical outcome for a single patient based on multiple recordings using a simple feed-forward neural network. Main results We show qualitatively and quantitatively that the MIL approach yields useful features and can be used to detect murmurs on multiple time instances and may thus guide a practitioner through PCGs. We analyze the second stage of the model in terms of murmur classification and clinical outcome. We achieved a weighted accuracy of 0.714 and an outcome cost of 13612 when using the PANN model and demographic features on the CirCor dataset (hidden test set of the George B. Moody PhysioNet challenge 2022, team “Heart2Beat”, rank 12 / 40). Significance To the best of our knowledge, we are the first to demonstrate the usefulness of MIL in PCG classification. Also, we showcase how the explainability of the model can be analyzed quantitatively, thus avoiding confirmation bias inherent to many post-hoc methods. Finally, our overall results demonstrate the merit of employing MIL combined with handcrafted features for the generation of explainable features as well as for a competitive classification performance.

Publisher

Public Library of Science (PLoS)

Reference37 articles.

1. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action;GA Roth;Journal of the American College of Cardiology,2020

2. Heart Murmur Detection from Phonocardiogram Recordings: The George B. Moody PhysioNet Challenge 2022;MA Reyna;PLOS Digital Health,2023

3. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals;AL Goldberger;circulation,2000

4. Heart Murmurs in Children: Evaluation and Management;B Ford;American Family Physician,2022

5. Competency in Cardiac Examination Skills in Medical Students, Trainees, Physicians, and Maculty: A Multicenter Study;JM Vukanovic-Criley;Archives of Internal Medicine,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3