Predicting Successful Weaning from Mechanical Ventilation by Reduction in Positive End-expiratory Pressure Level Using Machine Learning

Author:

Sheikhalishahi Seyedmostafa,Kaspar MathiasORCID,Zaghdoudi Sarra,Sander Julia,Simon Philipp,Geisler Benjamin P.ORCID,Lange Dorothea,Hinske Ludwig Christian

Abstract

Weaning patients from mechanical ventilation (MV) is a critical and resource intensive process in the Intensive Care Unit (ICU) that impacts patient outcomes and healthcare expenses. Weaning methods vary widely among providers. Prolonged MV is associated with adverse events and higher healthcare expenses. Predicting weaning readiness is a non-trivial process in which the positive end-expiratory pressure (PEEP), a crucial component of MV, has potential to be indicative but has not yet been used as the target. We aimed to predict successful weaning from mechanical ventilation by targeting changes in the PEEP-level using a supervised machine learning model. This retrospective study included 12,153 mechanically ventilated patients from Medical Information Mart for Intensive Care (MIMIC-IV) and eICU collaborative research database (eICU-CRD). Two machine learning models (Extreme Gradient Boosting and Logistic Regression) were developed using a continuous PEEP reduction as target. The data is splitted into 80% as training set and 20% as test set. The model’s predictive performance was reported using 95% confidence interval (CI), based on evaluation metrics such as area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), F1-Score, Recall, positive predictive value (PPV), and negative predictive value (NPV). The model’s descriptive performance was reported as the variable ranking using SHAP (SHapley Additive exPlanations) algorithm. The best model achieved an AUROC of 0.84 (95% CI 0.83–0.85) and an AUPRC of 0.69 (95% CI 0.67–0.70) in predicting successful weaning based on the PEEP reduction. The model demonstrated a Recall of 0.85 (95% CI 0.84–0.86), F1-score of 0.86 (95% CI 0.85–0.87), PPV of 0.87 (95% CI 0.86–0.88), and NPV of 0.64 (95% CI 0.63–0.66). Most of the variables that SHAP algorithm ranked to be important correspond with clinical intuition, such as duration of MV, oxygen saturation (SaO2), PEEP, and Glasgow Coma Score (GCS) components. This study demonstrates the potential application of machine learning in predicting successful weaning from MV based on continuous PEEP reduction. The model’s high PPV and moderate NPV suggest that it could be a useful tool to assist clinicians in making decisions regarding ventilator management.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3