Diseasomics: Actionable machine interpretable disease knowledge at the point-of-care

Author:

Talukder Asoke K.,Schriml LynnORCID,Ghosh ArnabORCID,Biswas Rakesh,Chakrabarti PrantarORCID,Haas Roland E.ORCID

Abstract

Physicians establish diagnosis by assessing a patient’s signs, symptoms, age, sex, laboratory test findings and the disease history. All this must be done in limited time and against the backdrop of an increasing overall workload. In the era of evidence-based medicine it is utmost important for a clinician to be abreast of the latest guidelines and treatment protocols which are changing rapidly. In resource limited settings, the updated knowledge often does not reach the point-of-care. This paper presents an artificial intelligence (AI)-based approach for integrating comprehensive disease knowledge, to support physicians and healthcare workers in arriving at accurate diagnoses at the point-of-care. We integrated different disease-related knowledge bodies to construct a comprehensive, machine interpretable diseasomics knowledge-graph that includes the Disease Ontology, disease symptoms, SNOMED CT, DisGeNET, and PharmGKB data. The resulting disease-symptom network comprises knowledge from the Symptom Ontology, electronic health records (EHR), human symptom disease network, Disease Ontology, Wikipedia, PubMed, textbooks, and symptomology knowledge sources with 84.56% accuracy. We also integrated spatial and temporal comorbidity knowledge obtained from EHR for two population data sets from Spain and Sweden respectively. The knowledge graph is stored in a graph database as a digital twin of the disease knowledge. We use node2vec (node embedding) as digital triplet for link prediction in disease-symptom networks to identify missing associations. This diseasomics knowledge graph is expected to democratize the medical knowledge and empower non-specialist health workers to make evidence based informed decisions and help achieve the goal of universal health coverage (UHC). The machine interpretable knowledge graphs presented in this paper are associations between various entities and do not imply causation. Our differential diagnostic tool focusses on signs and symptoms and does not include a complete assessment of patient’s lifestyle and health history which would typically be necessary to rule out conditions and to arrive at a final diagnosis. The predicted diseases are ordered according to the specific disease burden in South Asia. The knowledge graphs and the tools presented here can be used as a guide.

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Achieving Universal Health Coverage (UHC): Dominance analysis across 183 countries highlights importance of strengthening health workforce;M Reid;PLOS ONE,2020

2. National Academy of Medicine;Taking Action Against Clinician Burnout: A Systems Approach to Professional Well-Being,2019

3. Talukder AK, Haas RE. AIoT: AI meets IoT and Web in Smart Healthcare. In 13th ACM Web Science Conference. 2020. doi: 10.1145/3462741.3466650

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3