Public interest trends for COVID-19 and pandemic trajectory: A time-series analysis of US state-level data

Author:

Ziakas Panayiotis D.,Mylonakis EleftheriosORCID

Abstract

Google Trends provides spatiotemporal data for user-specific terms scaled from less than 1 (lowest relative popularity) to 100 (highest relative popularity) as a proxy for the public interest. Here we use US state-level data for COVID-19 to examine popularity trends during the pandemic evolution. We used "coronavirus" and "covid" search terms and set the period up from January 1st, 2020, to November 12, 2022. We measured the agreement on web rankings between states using the nonparametric Kendall’s W (0 for no concordance to 1 for perfect agreement). We compiled state-level weekly data on COVID-19 incidence and mortality and scaled state curves from 0 to 100 through a min-max normalization process. We used a dynamic time-warping algorithm to calculate similarities between the popularity, mortality, and incidence of COVID-19. The methodology is a pattern recognition process between time series by distance optimization. The similarity was mapped from 0 to 1, with 1 indicating perfect similarity and 0 indicating no similarity. The peak in popularity was in March 2020, succeeded by a decline and a prolonged period of fluctuation around 20%. Public interest rose briefly at the end of 2021, to fall to a low activity of around 10%. This pattern was remarkably consistent across states (Kendal’s W 0.94, p < 0.001). Web search trends were an impression of contagion growth: Overall, popularity-mortality trajectories yielded higher similarity indices (median 0.78; interquartile range 0.75–0.82) compared to popularity-incidence trajectories (median 0.74; interquartile range 0.72–0.76, Wilcoxon’s exact p<0.001). The popularity-mortality trajectories had a very strong similarity (>0.80) in 19/51 (37%) regions, as opposed to only 4/51 (8%) for popularity-incidence trajectories. State-level data show a fading public concern about COVID-19, and web-search popularity patterns may reflect the COVID-19 trajectory in terms of cases and mortality.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3