EEG classification of traumatic brain injury and stroke from a nonspecific population using neural networks

Author:

Caiola MichaelORCID,Babu Avaneesh,Ye Meijun

Abstract

Traumatic Brain Injury (TBI) and stroke are devastating neurological conditions that affect hundreds of people daily. Unfortunately, detecting TBI and stroke without specific imaging techniques or access to a hospital often proves difficult. Our prior research used machine learning on electroencephalograms (EEGs) to select important features and to classify between normal, TBI, and stroke on an independent dataset from a public repository with an accuracy of 0.71. In this study, we expanded to explore whether featureless and deep learning models can provide better performance in distinguishing between TBI, stroke and normal EEGs by including more comprehensive data extraction tools to drastically increase the size of the training dataset. We compared the performance of models built upon selected features with Linear Discriminative Analysis and ReliefF with several featureless deep learning models. We achieved 0.85 area under the curve (AUC) of the receiver operating characteristic curve (ROC) using feature-based models, and 0.84 AUC with featureless models. In addition, we demonstrated that Gradient-weighted Class Activation Mapping (Grad-CAM) can provide insight into patient-specific EEG classification by highlighting problematic EEG segments during clinical review. Overall, our study suggests that machine learning and deep learning of EEG or its precomputed features can be a useful tool for TBI and stroke detection and classification. Although not surpassing the performance of feature-based models, featureless models reached similar levels without prior computation of a large feature set allowing for faster and cost-efficient deployment, analysis, and classification.

Funder

Food and Drug Administration

Publisher

Public Library of Science (PLoS)

Reference41 articles.

1. Centers for Disease Control and Prevention. Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation; 2015.

2. Heart disease and stroke statistics—2022 update: a report from the American Heart Association;CW Tsao;Circulation,2022

3. Centers for Disease Control and Prevention. National Center for Health Statistics: Mortality data on CDC WONDER; 2022. Available from: https://wonder.cdc.gov/mcd.html.

4. Assessment of coma and impaired consciousness: a practical scale;G Teasdale;The Lancet,1974

5. Clinical policy: neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting;AS Jagoda;Journal of Emergency Nursing,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3