Validation of a deep learning, value-based care model to predict mortality and comorbidities from chest radiographs in COVID-19

Author:

Pyrros AyisORCID,Rodriguez Fernandez Jorge,Borstelmann Stephen M.,Flanders Adam,Wenzke Daniel,Hart Eric,Horowitz Jeanne M.ORCID,Nikolaidis Paul,Willis Melinda,Chen AndrewORCID,Cole PatrickORCID,Siddiqui Nasir,Muzaffar MominORCID,Muzaffar Nadir,McVean Jennifer,Menchaca Martha,Katsaggelos Aggelos K.,Koyejo Sanmi,Galanter WilliamORCID

Abstract

We validate a deep learning model predicting comorbidities from frontal chest radiographs (CXRs) in patients with coronavirus disease 2019 (COVID-19) and compare the model’s performance with hierarchical condition category (HCC) and mortality outcomes in COVID-19. The model was trained and tested on 14,121 ambulatory frontal CXRs from 2010 to 2019 at a single institution, modeling select comorbidities using the value-based Medicare Advantage HCC Risk Adjustment Model. Sex, age, HCC codes, and risk adjustment factor (RAF) score were used. The model was validated on frontal CXRs from 413 ambulatory patients with COVID-19 (internal cohort) and on initial frontal CXRs from 487 COVID-19 hospitalized patients (external cohort). The discriminatory ability of the model was assessed using receiver operating characteristic (ROC) curves compared to the HCC data from electronic health records, and predicted age and RAF score were compared using correlation coefficient and absolute mean error. The model predictions were used as covariables in logistic regression models to evaluate the prediction of mortality in the external cohort. Predicted comorbidities from frontal CXRs, including diabetes with chronic complications, obesity, congestive heart failure, arrhythmias, vascular disease, and chronic obstructive pulmonary disease, had a total area under ROC curve (AUC) of 0.85 (95% CI: 0.85–0.86). The ROC AUC of predicted mortality for the model was 0.84 (95% CI,0.79–0.88) for the combined cohorts. This model using only frontal CXRs predicted select comorbidities and RAF score in both internal ambulatory and external hospitalized COVID-19 cohorts and was discriminatory of mortality, supporting its potential use in clinical decision making.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

Public Library of Science (PLoS)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3