Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale

Author:

Le Goallec Alan,Collin SashaORCID,Jabri M’Hamed,Diai Samuel,Vincent Théo,Patel Chirag J.ORCID

Abstract

Physical activity improves quality of life and protects against age-related diseases. With age, physical activity tends to decrease, increasing vulnerability to disease in the elderly. In the following, we trained a neural network to predict age from 115,456 one week-long 100Hz wrist accelerometer recordings from the UK Biobank (mean absolute error = 3.7±0.2 years), using a variety of data structures to capture the complexity of real-world activity. We achieved this performance by preprocessing the raw frequency data as 2,271 scalar features, 113 time series, and four images. We defined accelerated aging for a participant as being predicted older than one’s actual age and identified both genetic and environmental exposure factors associated with the new phenotype. We performed a genome wide association on the accelerated aging phenotypes to estimate its heritability (h_g2 = 12.3±0.9%) and identified ten single nucleotide polymorphisms in close proximity to genes in a histone and olfactory cluster on chromosome six (e.g HIST1H1C, OR5V1). Similarly, we identified biomarkers (e.g blood pressure), clinical phenotypes (e.g chest pain), diseases (e.g hypertension), environmental (e.g smoking), and socioeconomic (e.g income and education) variables associated with accelerated aging. Physical activity-derived biological age is a complex phenotype associated with both genetic and non-genetic factors.

Funder

National Institute of Environmental Health Sciences

Publisher

Public Library of Science (PLoS)

Reference85 articles.

1. The Importance of Physical Activity Exercise among Older People;B Langhammer;Biomed Res Int,2018

2. Physical fitness and all-cause mortality. A prospective study of healthy men and women;SN Blair;J Am Med Assoc,1989

3. Effect of age and weight on physical activity;RV Suryadinata;Journal of Public Health Research,2020

4. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study;L Ferrucci;J Am Geriatr Soc,2000

5. Biomarkers of aging;GT 3rd Baker;Exp Gerontol,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3