Infusing behavior science into large language models for activity coaching

Author:

Hegde NarayanORCID,Vardhan Madhurima,Nathani Deepak,Rosenzweig Emily,Speed Cathy,Karthikesalingam Alan,Seneviratne Martin

Abstract

Large language models (LLMs) have shown promise for task-oriented dialogue across a range of domains. The use of LLMs in health and fitness coaching is under-explored. Behavior science frameworks such as COM-B, which conceptualizes behavior change in terms of capability (C), Opportunity (O) and Motivation (M), can be used to architect coaching interventions in a way that promotes sustained change. Here we aim to incorporate behavior science principles into an LLM using two knowledge infusion techniques: coach message priming (where exemplar coach responses are provided as context to the LLM), and dialogue re-ranking (where the COM-B category of the LLM output is matched to the inferred user need). Simulated conversations were conducted between the primed or unprimed LLM and a member of the research team, and then evaluated by 8 human raters. Ratings for the primed conversations were significantly higher in terms of empathy and actionability. The same raters also compared a single response generated by the unprimed, primed and re-ranked models, finding a significant uplift in actionability and empathy from the re-ranking technique. This is a proof of concept of how behavior science frameworks can be infused into automated conversational agents for a more principled coaching experience.

Publisher

Public Library of Science (PLoS)

Reference61 articles.

1. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants;R Guthold;Lancet Glob Health,2018

2. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy;IM Lee;Lancet,2012

3. WHO. GLOBAL ACTION PLAN ON PHYSICAL ACTIVITY 2018-2030: More active people for a healthier world. World Health Organization; 2018.

4. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot Learners. 2020;.

5. Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, et al. PaLM: Scaling Language Modeling with Pathways. 2022;.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3