Improving sepsis prediction in intensive care with SepsisAI: A clinical decision support system with a focus on minimizing false alarms

Author:

Gupta AnkitORCID,Chauhan Ruchi,G Saravanan,Shreekumar Ananth

Abstract

Prediction of sepsis using machine-learning approaches has recently gained traction. However, the lack of translation of these algorithms into clinical routine remains a major issue. Existing early sepsis detection methods are either based on the older definition of sepsis or do not accurately detect sepsis leading to the high frequency of false-positive alarms. This results in a well-known issue of clinicians’ “alarm fatigue”, leading to decreased responsiveness and identification, ultimately resulting in delayed clinical intervention. Hence, there is a fundamental, unmet need for a clinical decision system capable of accurate and timely sepsis diagnosis, running at the point of need. In this work, SepsisAI–a deep-learning algorithm based on long short-term memory (LSTM) networks was developed to predict the early onset of hospital-acquired sepsis in real-time for patients admitted to the ICU. The models are trained and validated with data from the PhysioNet Challenge, consisting of 40,336 patient data files from two healthcare systems: Beth Israel Deaconess Medical Center and Emory University Hospital. In the short term, the algorithm tracks frequently measured vital signs, sparsely available lab parameters, demographic features, and certain derived features for making predictions. A real-time alert system, which monitors the trajectory of the predictions, is developed on top of the deep-learning framework to minimize false alarms. On a balanced test dataset, the model achieves an AUROC, AUPRC, sensitivity, and specificity of 0.95, 0.96, 88.19%, and 96.75%, respectively at the patient level. In terms of lookahead time, the model issues a warning at a median of 6 hours (IQR 6 to 20 hours) and raises an alert at a median of 4 hours (IQR 2 to 5 hours) ahead of sepsis onset. Most importantly, the model achieves a false-alarm ratio of 3.18% for alerts, which is significantly less than other sepsis alarm systems. Additionally, on a disease prevalence-based test set, the algorithm reported similar outcomes with AUROC and AUPRC of 0.94 and 0.87, respectively, with sensitivity, and specificity of 97.05%, and 96.75%, respectively. The proposed algorithm might serve as a clinical decision support system to assist clinicians in the accurate and timely diagnosis of sepsis. With exceptionally high specificity and low false-alarm rate, this algorithm also helps mitigate the well-known issue of clinician alert fatigue arising from currently proposed sepsis alarm systems. Consequently, the algorithm partially addresses the challenges of successfully integrating machine-learning algorithms into routine clinical care.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3