Wearable sensor-based performance status assessment in cancer: A pilot multicenter study from the Alliance for Clinical Trials in Oncology (A19_Pilot2)

Author:

Wood William A.ORCID,Dilip DeepikaORCID,Derkach Andriy,Grover Natalie S.ORCID,Elemento Olivier,Levine Ross,Thanarajasingam Gita,Batsis John A.,Bailey Charlotte,Kannappan Arun,Devine Steven M.,Artz Andrew S.,Ligibel Jennifer A.,Basch Ethan,Kent Erin,Glass Jacob

Abstract

Clinical performance status is designed to be a measure of overall health, reflecting a patient’s physiological reserve and ability to tolerate various forms of therapy. Currently, it is measured by a combination of subjective clinician assessment and patient-reported exercise tolerance in the context of daily living activities. In this study, we assess the feasibility of combining objective data sources and patient-generated health data (PGHD) to improve the accuracy of performance status assessment during routine cancer care. Patients undergoing routine chemotherapy for solid tumors, routine chemotherapy for hematologic malignancies, or hematopoietic stem cell transplant (HCT) at one of four sites in a cancer clinical trials cooperative group were consented to a six-week prospective observational clinical trial (NCT02786628). Baseline data acquisition included cardiopulmonary exercise testing (CPET) and a six-minute walk test (6MWT). Weekly PGHD included patient-reported physical function and symptom burden. Continuous data capture included use of a Fitbit Charge HR (sensor). Baseline CPET and 6MWT could only be obtained in 68% of study patients, suggesting low feasibility during routine cancer treatment. In contrast, 84% of patients had usable fitness tracker data, 93% completed baseline patient-reported surveys, and overall, 73% of patients had overlapping sensor and survey data that could be used for modeling. A linear model with repeated measures was constructed to predict the patient-reported physical function. Sensor-derived daily activity, sensor-derived median heart rate, and patient-reported symptom burden emerged as strong predictors of physical function (marginal R2 0.429–0.433, conditional R2 0.816–0.822). Trial Registration: Clinicaltrials.gov Id NCT02786628.

Funder

NIH

Publisher

Public Library of Science (PLoS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3