Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach

Author:

Dey Samrat KumarORCID,Rahman Md. Mahbubur,Howlader Arpita,Siddiqi Umme Raihan,Uddin Khandaker Mohammad Mohi,Borhan Rownak,Rahman Elias UrORCID

Abstract

Dengue fever is a severe disease spread by Aedes mosquito-borne dengue viruses (DENVs) in tropical areas such as Bangladesh. Since its breakout in the 1960s, dengue fever has been endemic in Bangladesh, with the highest concentration of infections in the capital, Dhaka. This study aims to develop a machine learning model that can use relevant information about the factors that cause Dengue outbreaks within a geographic region. To predict dengue cases in 11 different districts of Bangladesh, we created a DengueBD dataset and employed two machine learning algorithms, Multiple Linear Regression (MLR) and Support Vector Regression (SVR). This research also explores the correlation among environmental factors like temperature, rainfall, and humidity with the rise and decline trend of Dengue cases in different cities of Bangladesh. The entire dataset was divided into an 80:20 ratio, with 80 percent used for training and 20% used for testing. The research findings imply that, for both the MLR with 67% accuracy along with Mean Absolute Error (MAE) of 4.57 and SVR models with 75% accuracy along with Mean Absolute Error (MAE) of 4.95, the number of dengue cases reduces throughout the winter season in the country and increases mainly during the rainy season in the next ten months, from August 2021 to May 2022. Importantly, Dhaka, Bangladesh’s capital, will see the maximum number of dengue patients during this period. Overall, the results of this data-driven analysis show that machine learning algorithms have enormous potential for predicting dengue epidemics.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. Dengue and severe dengue. [cited 9 Nov 2021]. Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

2. Forecasting dengue fever in Brazil: An assessment of climate conditions;LM Stolerman;PLOS ONE,2019

3. Dengue Virus

4. Dengue in a crowded megacity: Lessons learnt from 2019 outbreak in Dhaka, Bangladesh;MS Hossain;PLOS Neglected Tropical Diseases,2020

5. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore;CM Benedum;PLOS Neglected Tropical Diseases,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3