A Weighted and Normalized Gould–Fernandez brokerage measure

Author:

Zádor ZsófiaORCID,Zhu ZhenORCID,Smith MatthewORCID,Gorgoni Sara

Abstract

The Gould and Fernandez local brokerage measure defines brokering roles based on the group membership of the nodes from the incoming and outgoing edges. This paper extends on this brokerage measure to account for weighted edges and introduces the Weighted–Normalized Gould–Fernandez measure (WNGF). The value added of this new measure is demonstrated empirically with both a macro level trade network and a micro level organization network. The measure is first applied to the EUREGIO inter-regional trade dataset and then to an organizational network in a research and development (R&D) group. The results gained from the WNGF measure are compared to those from two dichotomized networks: a threshold and a multiscale backbone network. The results show that the WNGF generates valid results, consistent with those of the dichotomized network. In addition, it provides the following advantages: (i) it ensures information retention; (ii) since no alterations and decisions have to be made on how to dichotomize the network, the WNGF frees the user from the burden of making assumptions; (iii) it provides a nuanced understanding of each node’s brokerage role. These advantages are of special importance when the role of less connected nodes is considered. The two empirical networks used here are for illustrative purposes. Possible applications of WNGF span beyond regional and organizational studies, and into all those contexts where retaining weights is important, for example by accounting for persisting or repeating edges compared to one-time interactions. WNGF can also be used to further analyze networks that measure how often people meet, talk, text, like, or retweet. WNGF makes a relevant methodological contribution as it offers a way to analyze brokerage in weighted, directed, and even complete graphs without information loss that can be used across disciplines and different type of networks.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference68 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3