Estimating the population exposed to a risk factor over a time window: A microsimulation modelling approach from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury

Author:

Náfrádi Bálint,Kiiver Hannah,Neupane Subas,Momen Natalie C.,Streicher Kai N.,Pega FrankORCID

Abstract

Objectives Burden of disease estimation commonly requires estimates of the population exposed to a risk factor over a time window (yeart to yeart+n). We present a microsimulation modelling approach for producing such estimates and apply it to calculate the population exposed to long working hours for one country (Italy). Methods We developed a three-model approach: Model 1, a multilevel model, estimates exposure to the risk factor at the first year of the time window (yeart). Model 2, a regression model, estimates transition probabilities between exposure categories during the time window (yeart to yeart+n). Model 3, a microsimulation model, estimates the exposed population over the time window, using the Monte Carlo method. The microsimulation is carried out in three steps: (a) a representative synthetic population is initiated in the first year of the time window using prevalence estimates from Model 1, (b) the exposed population is simulated over the time window using the transition probabilities from Model 2; and (c) the population is censored for deaths during the time window. Results We estimated the population exposed to long working hours (i.e. 41–48, 49–54 and ≥55 hours/week) over a 10-year time window (2002–11) in Italy. We populated all three models with official data from Labour Force Surveys, United Nations population estimates and World Health Organization life tables. Estimates were produced of populations exposed over the time window, disaggregated by sex and 5-year age group. Conclusions Our modelling approach for estimating the population exposed to a risk factor over a time window is simple, versatile, and flexible. It however requires longitudinal exposure data and Model 3 (the microsimulation model) is stochastic. The approach can improve accuracy and transparency in exposure and burden of disease estimations. To improve the approach, a logical next step is changing Model 3 to a deterministic microsimulation method, such as modelling of microflows.

Funder

National Institute for Occupational Safety and Health

Bundesgesundheitsministerium

Spanish Agency for International Cooperation

European Union

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3