Minimal overall divergence of the gut microbiome in an adaptive radiation of Cyprinodon pupfishes despite potential adaptive enrichment for scale-eating

Author:

Heras JosephORCID,Martin Christopher H.

Abstract

Adaptive radiations offer an excellent opportunity to understand the eco-evolutionary dynamics of gut microbiota and host niche specialization. In a laboratory common garden, we compared the gut microbiota of two novel derived trophic specialist pupfishes, a scale-eater and a molluscivore, to closely related and distant outgroup generalist populations, spanning both rapid trophic evolution within 10 kya and stable generalist diets persisting over 11 Mya. We predicted an adaptive and highly divergent microbiome composition in the trophic specialists reflecting their rapid rates of craniofacial and behavioral diversification. We sequenced 16S rRNA amplicons of gut microbiomes from lab-reared adult pupfishes raised under identical conditions and fed the same high protein diet. In contrast to our predictions, gut microbiota largely reflected phylogenetic distance among species, rather than generalist or specialist life history, in support of phylosymbiosis. However, we did find significant enrichment of Burkholderiaceae bacteria in replicated lab-reared scale-eater populations. These bacteria sometimes digest collagen, the major component of fish scales, supporting an adaptive shift. We also found some enrichment of Rhodobacteraceae and Planctomycetia in lab-reared molluscivore populations, but these bacteria target cellulose. Overall phylogenetic conservation of microbiome composition contrasts with predictions of adaptive radiation theory and observations of rapid diversification in all other trophic traits in these hosts, including craniofacial morphology, foraging behavior, aggression, and gene expression, suggesting that the functional role of these minor shifts in microbiota will be important for understanding the role of the microbiome in trophic diversification.

Funder

National Institutes of Health

University of California, Berkeley

National Science Foundation DEB CAREER

California State University, San Bernardino

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference76 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3