Spatiotemporal changes in net primary productivity before and after the development of unused land in the hilly areas of Hebei, China

Author:

Zhao LiORCID,Chen Yaqian,Wang Xueyan,Su Mengwei,Xu Hao,Zhang Pengtao

Abstract

Net primary productivity (NPP) plays an important role in the carbon cycle of an ecosystem. To explore the impact of unused land development on NPP, this study adopted an improved Carnegie Ames Stanford Approach (CASA) model to analyze the changes in NPP before and after the development of unused land in Tang County, Hebei Province, in 2000, 2007, and 2018. The results showed that, due to the changes in land use types from unused land, forestland, arable land with high NPP values to urban and rural residential land, traffic land with low NPP values, and the changes in precipitation and temperature, the NPP in the study area showed an overall trend of decreasing first and then rising from 2000 to 2018. Before the development of unused land in 2000, the total NPP was 38.45×1010 g C. After the development in 2007 and 2018, the total NPP was 36.44×1010 g C and 41.05×1010 g C, respectively. The NPP of each land type in 2018 was arable land (1046.18 g C m-2) > forestland (464.42 g C m-2) > unused land (356.34 g C m-2) > grassland (343.77 g C m-2) > waters (182.56 g C m-2) > urban and rural settlements (120.86 g C m-2) > traffic land (120.70 g C m-2). The distribution of NPP was generally high in the north and low in the south before and after development. NPP was mainly concentrated in the interval of 300 g C m-2 yr-1–400 g C m-2 yr-1, and the range of NPP change was mostly within 100 g C m-2. The influence of elevation, temperature and precipitation on the spatial distribution of NPP was significant. Elevation and precipitation were positively correlated with NPP, while temperature was negatively correlated with NPP. The increase in NPP mainly originated from the conversion of unused land to forestland and arable land. The loss of NPP was mainly due to the conversion from forestland with high vegetation productivity to a land use type with low vegetation productivity, such as the conversion from forestland to urban and rural residential land. The results can provide references for making reasonable land planning decisions and ecological environment construction.

Funder

the Social Science Foundation of Hebei Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. The Micrometeorology of the urban forest.;TR Oke;Philosophical Transactions of the Royal Society B: Biological Science,1989

2. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3;XC Wang;Chinese Journal of Ecology,2013

3. Spatiotemporal distribution of net primary productivity and its driving factors in the Nanliu River basin in the Beibu Gulf;YC Tian;Acta Ecologica Sinica,2019

4. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China.;HF Yang;Catena,2021

5. Agroclimatic evaluation of net primary productivity of natural vegetations: (1) Chikugo model for evaluating net primary productivity;Z Uchijima;Journal of Agricultural Meteorology,1985

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3