New insights into the criteria of functional heterozygosity of the Apis mellifera complementary sex determining gene–Discovery of a functional allele pair differing by a single amino acid

Author:

Mroczek Robert,Laszkiewicz Agnieszka,Blazej Pawel,Adamczyk-Weglarzy Kinga,Niedbalska-Tarnowska Joanna,Cebrat MalgorzataORCID

Abstract

The complementary sex determiner (csd) gene is responsible for controlling the sex-determination molecular switch in western honey bees (Apis mellifera): bees that are heterozygous for csd develop into females, whereas bees that are hemizygous or homozygous develop into males. The homozygous diploid males are destroyed at an early stage of their development. It has been proposed that the minimal number of amino acid differences between two csd alleles needed to fully determine femaleness is five and it has also been shown that smaller differences may result in forming an evolutionary intermediate that is not fully capable of female determination, but has increased fitness compared to the homozygous genotype. In this study, we have implemented a terminal restriction length polymorphism-based method of identifying and distinguishing paternal alleles in a given bee colony and assigning them to a particular maternal allele in order to gather information on large number of functional csd pairs and also to identify, to some extent, genotypes that are underrepresented or absent in bee colonies. The main finding of this study is the identification of a fully functional genotype consisting of csd alleles that differed from each other by a one amino acid position. The individuals carrying this genotype expressed only female-specific transcripts of feminizer and double-sex genes. By comparing the sequences differences between the csd pair identified in our study with those described earlier, we conclude that functional heterozygosity of the csd gene is dependent not only on the number of the amino acid differences but also on the sequence context and position of the change. The discovery of a functional allele pair differing by a single amino acid also implies that the generation of a new csd specificity may also occur during a single mutation step with no need for evolutionary intermediates accumulating further mutations.

Funder

National Science Center Poland

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3