Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer

Author:

Marquis Colin D.,McCarley Lindze M.,Pollock Amy L.,Cutcher Acamaro S.,Cannella Max T.,Smith Tierra L.,Larsen Michael B.ORCID,Peden Brandon M.,Johnson Brad L.,Leger Janelle M.ORCID

Abstract

A surface plasmon polariton (SPP) is an excitation resulting from the coupling of light to a surface charge oscillation at a metal-dielectric interface. The excitation and detection of SPPs is foundational to the operating mechanism of a number of important technologies, most of which require SPP excitation via direct reflectance, commonly achieved via Attenuated Total Reflection (ATR) using the Kretschmann configuration. As a result, the accessible modes are fundamentally high-loss “leaky modes,” presenting a critical performance barrier. Recently, our group provided the first demonstration of “forbidden,” or guided-wave plasmon polariton modes (GW-PPMs), collective modes of a MIM structure with oscillatory electric field amplitude in the central insulator layer with up to an order of magnitude larger propagation lengths than those of traditional SPPs. However, in that work, GW-PPMs were accessed by indirect reflectance using Otto configuration ATR, making them of limited applied relevance. In this paper, we demonstrate a technique for direct reflectance excitation and detection of GW-PPMs. Specifically, we replace the air gap used in traditional Otto ATR with a low refractive index polymer coupling layer, mirroring a technique previously demonstrated to access Long-Range Surface Plasmon Polariton modes. We fit experimental ATR data using a robust theoretical model to confirm the character of the modes, as well as to explore the potential of this approach to enable advantageous propagation lengths. The ability to excite GW-PPMs using a device configuration that does not require an air gap could potentially enable transformative performance enhancements in a number of critical technologies.

Funder

Western Washington University

WWU Advanced Materials Science and Engineering Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

1. Surface plasmon subwavelength optics;WL Barnes;Nature,2003

2. The new “p–n junction”: Plasmonics enables photonic access to the nanoworld;HA Atwater;MRS Bulletin,2005

3. Nonlinear plasmonics;M Kauranen;Nature Photon,2012

4. Nano-optics from sensing to waveguiding;S Lal;Nature Photon,2007

5. Surface Plasmons on Smooth and Rough Surfaces and on Gratings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3