A deep learning system for heart failure mortality prediction

Author:

Li DengaoORCID,Fu Jian,Zhao Jumin,Qin Junnan,Zhang Lihui

Abstract

Heart failure (HF) is the final stage of the various heart diseases developing. The mortality rates of prognosis HF patients are highly variable, ranging from 5% to 75%. Evaluating the all-cause mortality of HF patients is an important means to avoid death and positively affect the health of patients. But in fact, machine learning models are difficult to gain good results on missing values, high dimensions, and imbalances HF data. Therefore, a deep learning system is proposed. In this system, we propose an indicator vector to indicate whether the value is true or be padded, which fast solves the missing values and helps expand data dimensions. Then, we use a convolutional neural network with different kernel sizes to obtain the features information. And a multi-head self-attention mechanism is applied to gain whole channel information, which is essential for the system to improve performance. Besides, the focal loss function is introduced to deal with the imbalanced problem better. The experimental data of the system are from the public database MIMIC-III, containing valid data for 10311 patients. The proposed system effectively and fast predicts four death types: death within 30 days, death within 180 days, death within 365 days and death after 365 days. Our study uses Deep SHAP to interpret the deep learning model and obtains the top 15 characteristics. These characteristics further confirm the effectiveness and rationality of the system and help provide a better medical service.

Funder

National Natural Science Foundation of China

Shanxi Province key technology and generic technology R&D project

National Major Scientific Research Instrument Development Project

Key research and development program of Shanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Heart Failure: Diagnosis, Severity Estimation and Prediction of Adverse Events Through Machine Learning Techniques;EE Tripoliti;Comp Struct Biotechnol J,2017

2. Editorial Board of Chinese Journal of Cardiology. Chinese guidelines for the diagnosis and treatment of heart failure 2018;Chinese Society of Cardiology of Chinese Medical Association;Chin J Heart Fail & Cardiomyopathy,2018

3. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America;CW Yancy;Circulation,2017

4. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America;CW Yancy;Journal of Cardiac Failure,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3