A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers

Author:

Rahman Md. SiddikurORCID,Chowdhury Arman HossainORCID

Abstract

COVID-19 pandemic has become a global major public health concern. Examining the meteorological risk factors and accurately predicting the incidence of the COVID-19 pandemic is an extremely important challenge. Therefore, in this study, we analyzed the relationship between meteorological factors and COVID-19 transmission in SAARC countries. We also compared the predictive accuracy of Autoregressive Integrated Moving Average (ARIMAX) and eXtreme Gradient Boosting (XGBoost) methods for precise modelling of COVID-19 incidence. We compiled a daily dataset including confirmed COVID-19 case counts, minimum and maximum temperature (°C), relative humidity (%), surface pressure (kPa), precipitation (mm/day) and maximum wind speed (m/s) from the onset of the disease to January 29, 2022, in each country. The data were divided into training and test sets. The training data were used to fit ARIMAX model for examining significant meteorological risk factors. All significant factors were then used as covariates in ARIMAX and XGBoost models to predict the COVID-19 confirmed cases. We found that maximum temperature had a positive impact on the COVID-19 transmission in Afghanistan (β = 11.91, 95% CI: 4.77, 19.05) and India (β = 0.18, 95% CI: 0.01, 0.35). Surface pressure had a positive influence in Pakistan (β = 25.77, 95% CI: 7.85, 43.69) and Sri Lanka (β = 411.63, 95% CI: 49.04, 774.23). We also found that the XGBoost model can help improve prediction of COVID-19 cases in SAARC countries over the ARIMAX model. The study findings will help the scientific communities and policymakers to establish a more accurate early warning system to control the spread of the pandemic.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3