A hybrid model integrating long short-term memory with adaptive genetic algorithm based on individual ranking for stock index prediction

Author:

Zeng XiaohuaORCID,Cai Jieping,Liang Changzhou,Yuan Chiping

Abstract

Modeling and forecasting stock prices have been important financial research topics in academia. This study seeks to determine whether improvements can be achieved by forecasting a stock index using a hybrid model and incorporating financial variables. We extend the literature on stock market forecasting by applying a hybrid model that combines wavelet transform (WT), long short-term memory (LSTM), and an adaptive genetic algorithm (AGA) based on individual ranking to predict stock indices for the Dow Jones Industrial Average (DJIA) index of the New York Stock Exchange, Standard & Poor’s 500 (S&P 500) index, Nikkei 225 index of Tokyo, Hang Seng Index of Hong Kong market, CSI300 index of Chinese mainland stock market, and NIFTY50 index of India. The results indicate an overall improvement in forecasting of the stock index using the AGA-LSTM model compared to the benchmark models. The evaluation indicators prove that this model has a higher prediction accuracy when forecasting six stock indices.

Funder

Distinctive Key Disciplines from Guangdong Education Department, China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. A hybrid volatility forecasting framework integrating garch, artificial neural network, technical analysis and principal components analysis;W. Kristjanpoller;Expert Systems with Applications,2018

2. A hybrid approach to model and forecast the electricity consumption by neurowavelet and arimax-garch models.;M. Zolfaghari;Energy Efficiency,2019

3. Machine learning for quantitative finance applications: A survey.;F. Rundo;Applied Sciences,2019

4. A systematic review of fundamental and technical analysis of stock market predictions;I. K. Nti;Artificial Intelligence Review,2019

5. Stock market analysis: A review and taxonomy of prediction techniques;D. Shah;International Journal of Financial Studies,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3