Swarming genetic algorithm: A nested fully coupled hybrid of genetic algorithm and particle swarm optimization

Author:

Aivaliotis-Apostolopoulos Panagiotis,Loukidis DimitriosORCID

Abstract

Particle swarm optimization and genetic algorithms are two classes of popular heuristic algorithms that are frequently used for solving complex multi-dimensional mathematical optimization problems, each one with its one advantages and shortcomings. Particle swarm optimization is known to favor exploitation over exploration, and as a result it often converges rapidly to local optima other than the global optimum. The genetic algorithm has the ability to overcome local extrema throughout the optimization process, but it often suffers from slow convergence rates. This paper proposes a new hybrid algorithm that nests particle swarm optimization operations in the genetic algorithm, providing the general population with the exploitation prowess of the genetic algorithm and a sub-population with the high exploitation capabilities of particle swarm optimization. The effectiveness of the proposed algorithm is demonstrated through solutions of several continuous optimization problems, as well as discrete (traveling salesman) problems. It is found that the new hybrid algorithm provides a better balance between exploration and exploitation compared to both parent algorithms, as well as existing hybrid algorithms, achieving consistently accurate results with relatively small computational cost.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Optimization by simulated annealing;S Kirkpatrick;Science,1983

2. Tabu search—part I;F. Glover;ORSA Journal on Computing,1989

3. Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of the 4th IEEE International Conference on Neural Networks; 1995. p. 1942–1948.

4. Ant system: optimization by a colony of cooperating agents;M Dorigo;IEEE Trans. Systems, Man, Cybernet.-Part B,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3