Accessing the stapedius muscle via novel surgical retrofacial approach during cochlear implantation surgery: Intraoperative results on feasibility and safety

Author:

Guntinas-Lichius OrlandoORCID,Arnold Dirk,Volk Gerd Fabian,Korth Daniela,Aschenbach Rene,Hempel Johann-MartinORCID,Schneider Fritz,Schade-Mann ThoreORCID,Gamerdinger Philipp,Tropitzsch Anke,Löwenheim Hubert

Abstract

Human stapedius muscle (SM) can be directly and safely accessed via retrofacial approach, opening new approaches to directly measure the electrically evoked stapedius reflex threshold (eSRT). The measurement of the SM activity via direct surgical access represents a potential tool for objective eSRT fitting of cochlear implants (CI), increasing the benefit experienced by the CI users and leading to new perspectives in the development of smart implantable neurostimulators. 3D middle-ear reconstructions created after manual segmentation and related SM accessibility metrics were evaluated before the CI surgery for 16 candidates with assessed stapedius reflex. Retrofacial approach to access the SM was performed after facial recess exposure. In cases of poor exposition of SM, the access was performed anteriorly to the FN via drilling of the pyramidal eminence (PE). The total access rate of the SM via both the retrofacial and anterior approach of the FN was 100%. In 81.2% of cases (13/16), the retrofacial approach allowed to access the SM on previously categorized well exposed (8/8), partially exposed (4/5), and wholly concealed (1/3) SM with respect to FN. Following intraoperative evaluation in the remaining 18.8% (3/16), the SM was accessed anteriorly via drilling of the PE. Exposure of SM with respect to the FN and the sigmoid sinus’s prominence was a predictor for the suitable surgical approach. The retrofacial approach offers feasible and reproducible access to the SM belly, opening direct access to electromyographic sensing of the eSRT. Surgical planner tools can quantitatively assist pre-surgical assessment.

Funder

MEDEL

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3