Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation

Author:

Albrecht SteffenORCID,Andreani Tommaso,Andrade-Navarro Miguel A.,Fontaine Jean FredORCID

Abstract

MotivationSingle-cell Chromatin ImmunoPrecipitation DNA-Sequencing (scChIP-seq) analysis is challenging due to data sparsity. High degree of sparsity in biological high-throughput single-cell data is generally handled with imputation methods that complete the data, but specific methods for scChIP-seq are lacking. We present SIMPA, a scChIP-seq data imputation method leveraging predictive information within bulk data from the ENCODE project to impute missing protein-DNA interacting regions of target histone marks or transcription factors.ResultsImputations using machine learning models trained for each single cell, each ChIP protein target, and each genomic region accurately preserve cell type clustering and improve pathway-related gene identification on real human data. Results on bulk data simulating single cells show that the imputations are single-cell specific as the imputed profiles are closer to the simulated cell than to other cells related to the same ChIP protein target and the same cell type. Simulations also show that 100 input genomic regions are already enough to train single-cell specific models for the imputation of thousands of undetected regions. Furthermore, SIMPA enables the interpretation of machine learning models by revealing interaction sites of a given single cell that are most important for the imputation model trained for a specific genomic region. The corresponding feature importance values derived from promoter-interaction profiles of H3K4me3, an activating histone mark, highly correlate with co-expression of genes that are present within the cell-type specific pathways in 2 real human and mouse datasets. The SIMPA’s interpretable imputation method allows users to gain a deep understanding of individual cells and, consequently, of sparse scChIP-seq datasets.Availability and implementationOur interpretable imputation algorithm was implemented in Python and is available athttps://github.com/salbrec/SIMPA.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3