Applying a deep convolutional neural network to monitor the lateral spread response during microvascular surgery for hemifacial spasm

Author:

Kim MinsooORCID,Park Sang-KuORCID,Kubota Yasuhiro,Lee SeunghoonORCID,Park Kwan,Kong Doo-SikORCID

Abstract

Background Intraoperative neurophysiological monitoring is essential in neurosurgical procedures. In this study, we built and evaluated the performance of a deep neural network in differentiating between the presence and absence of a lateral spread response, which provides critical information during microvascular decompression surgery for the treatment of hemifacial spasm using intraoperatively acquired electromyography images. Methods and findings A total of 3,674 image screenshots of monitoring devices from 50 patients were prepared, preprocessed, and then adopted into training and validation sets. A deep neural network was constructed using current-standard, off-the-shelf tools. The neural network correctly differentiated 50 test images (accuracy, 100%; area under the curve, 0.96) collected from 25 patients whose data were never exposed to the neural network during training or validation. The accuracy of the network was equivalent to that of the neuromonitoring technologists (p = 0.3013) and higher than that of neurosurgeons experienced in hemifacial spasm (p < 0.0001). Heatmaps obtained to highlight the key region of interest achieved a level similar to that of trained human professionals. Provisional clinical application showed that the neural network was preferable as an auxiliary tool. Conclusions A deep neural network trained on a dataset of intraoperatively collected electromyography data could classify the presence and absence of the lateral spread response with equivalent performance to human professionals. Well-designated applications based upon the neural network may provide useful auxiliary tools for surgical teams during operations.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3