An investigation into the effects and effectiveness of correlation network filtration methods with financial returns

Author:

Millington TristanORCID

Abstract

When studying financial markets, we often look at estimating a correlation matrix from asset returns. These tend to be noisy, with many more dimensions than samples, so often the resulting correlation matrix is filtered. Popular methods to do this include the minimum spanning tree, planar maximally filtered graph and the triangulated maximally filtered graph, which involve using the correlation network as the adjacency matrix of a graph and then using tools from graph theory. These assume the data fits some form of shape. We do not necessarily have a reason to believe that the data does fit into this shape, and there have been few empirical investigations comparing how the methods perform. In this paper we look at how the filtered networks are changed from the original networks using stock returns from the US, UK, German, Indian and Chinese markets, and at how these methods affect our ability to distinguish between datasets created from different correlation matrices using a graph embedding algorithm. We find that the relationship between the full and filtered networks depends on the data and the state of the market, and decreases as we increase the size of networks, and that the filtered networks do not provide an improvement in classification accuracy compared to the full networks.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3