Mind the gap: Distributed practice enhances performance in a MOBA game

Author:

Vardal OzanORCID,Bonometti Valerio,Drachen Anders,Wade Alex,Stafford TomORCID

Abstract

Understanding how humans master complex skills has the potential for wide-reaching societal benefit. Research has shown that one important aspect of effective skill learning is the temporal distribution of practice episodes (i.e., distributed practice). Using a large observational sample of players (n= 162,417) drawn from a competitive and popular online game (League of Legends), we analysed the relationship between practice distribution and performance through time. We compared groups of players who exhibited different play schedules using data slicing and machine learning techniques, to show that players who cluster gameplay into shorter time frames ultimately achieve lower performance levels than those who space their games across longer time windows. Additionally, we found that the timing of intensive play periods does not affect final performance—it is the overall amount of spacing that matters. These results extend some of the key findings in the literature on practice and learning to an ecologically valid environment with hugen. We discuss our work in relation to recent studies that have examined practice effects using Big Data and suggest solutions for salient confounds.

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3