Abstract
Background
Severe coronavirus disease 2019 (COVID-19) patients frequently require mechanical ventilation (MV) and undergo prolonged periods of bed rest with restriction of activities during the intensive care unit (ICU) stay. Our aim was to address the degree of mobilization in critically ill patients with COVID-19 undergoing to MV support.
Methods
Retrospective single-center cohort study. We analyzed patients’ mobility level, through the Perme ICU Mobility Score (Perme Score) of COVID-19 patients admitted to the ICU. The Perme Mobility Index (PMI) was calculated [PMI = ΔPerme Score (ICU discharge–ICU admission)/ICU length of stay], and patients were categorized as “improved” (PMI > 0) or “not improved” (PMI ≤ 0). Comparisons were performed with stratification according to the use of MV support.
Results
From February 2020, to February 2021, 1,297 patients with COVID-19 were admitted to the ICU and assessed for eligibility. Out of those, 949 patients were included in the study [524 (55.2%) were classified as “improved” and 425 (44.8%) as “not improved”], and 396 (41.7%) received MV during ICU stay. The overall rate of patients out of bed and able to walk ≥ 30 meters at ICU discharge were, respectively, 526 (63.3%) and 170 (20.5%). After adjusting for confounders, independent predictors of improvement of mobility level were frailty (OR: 0.52; 95% CI: 0.29–0.94; p = 0.03); SAPS III Score (OR: 0.75; 95% CI: 0.57–0.99; p = 0.04); SOFA Score (OR: 0.58; 95% CI: 0.43–0.78; p < 0.001); use of MV after the first hour of ICU admission (OR: 0.41; 95% CI: 0.17–0.99; p = 0.04); tracheostomy (OR: 0.54; 95% CI: 0.30–0.95; p = 0.03); use of extracorporeal membrane oxygenation (OR: 0.21; 95% CI: 0.05–0.8; p = 0.03); neuromuscular blockade (OR: 0.53; 95% CI: 0.3–0.95; p = 0.03); a higher Perme Score at admission (OR: 0.35; 95% CI: 0.28–0.43; p < 0.001); palliative care (OR: 0.05; 95% CI: 0.01–0.16; p < 0.001); and a longer ICU stay (OR: 0.79; 95% CI: 0.61–0.97; p = 0.04) were associated with a lower chance of mobility improvement, while non-invasive ventilation within the first hour of ICU admission and after the first hour of ICU admission (OR: 2.45; 95% CI: 1.59–3.81; p < 0.001) and (OR: 2.25; 95% CI: 1.56–3.26; p < 0.001), respectively; and vasopressor use (OR: 2.39; 95% CI: 1.07–5.5; p = 0.03) were associated with a higher chance of mobility improvement.
Conclusion
The use of MV reduced mobility status in less than half of critically ill COVID-19 patients.
Publisher
Public Library of Science (PLoS)
Reference46 articles.
1. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control.;YA Helmy;J Clin Med Res,2020
2. WHO Coronavirus (COVID-19) dashboard. [cited 11 Jul 2022]. Available: https://covid19.who.int
3. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention;Z Wu;JAMA,2020
4. Clinical features of patients infected with 2019 novel coronavirus in Wuhan;C Huang;China. Lancet,2020
5. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area;S Richardson;JAMA,2020
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献